HEPATITIS C: A LEADING CAUSE OF CIRRHOSIS AT DHQ HOSPITAL D.I.KHAN

I.U. MAHSUD, R.U. DIN, H.U. KHAN AND S. HUMAYUN SHAH Departments of Medicine and Pathology, Gomal Medical College, D. I.l Khan, Pakistan

Heptatic cirrhosis is a common condition in our country and because of its morbidity and mortality the financial implications of this disease are enormous for our health care system. Diagnosis of cirrhosis, especially in the advanced stage, means ultimate progression to death due to the complications occurring in due course of the disease. It is therefore important to know about the main factors responsible for this condition so as to avoid or remove them before establishment of this deadly disease. Alcohol is an important cause of cirrhosis in the western world but in developing countries hepatotropic viruses namely Hepatitis B virus & Hepatitis C virus are mainly responsible for this condition. The aim of this study was to know about the recent situation regarding causation of this disease in our area and to make comparison with similar studies carried out elsewhere. This study was conducted in department of medicine at DHQ Teaching Hospital D.I.Khan from 1st January 2003 to 30th April 2006. All cirrhotic patients attending this hospital were admitted to the Medical Unit. Serum was tested for Hepatitis B surface antigen and for Hepatitis C virus antibodies by ELISA. A total of 336 patients were studied. Their variables were recorded and analyzed. Out of 336 patients, 190 (56.54%) were HCV positive, 102 (30.35%) were positive for Hepatitis B Surface antigen. Sixteen (4.76%) were having markers of both Hepatitis B & Hepatitis C virus indicating dual infection. In 28 (8.33%) patients there was no evidence of infection with either Hepatitis B or Hepatitis C virus. Two hundred & twenty eight (67.85%) patients were males and 108 (32.15%) were females. As a conclusion cases of cirrhosis due to Hepatitis C virus outnumber all other causes and the condition is more common in males.

Cirrhosis results from persistent and longstanding damage to liver due to a variety of causes. In developing countries Hepatitis B virus (HBV) and Hepatitis C virus (HCV) are mainly responsible for the condition whereas in the West alcohol consumption is responsible for a significant number of cases of cirrhosis. However even in countries like United States HCV is the leading cause of death from liver disease1 and more than 2.7 million people are having ongoing HCV infection. Previously HBV was considered as the common cause of non-alcoholic cirrhosis but with the availability of screening tests for HCV, the situation seems to be different³. In Pakistan screening of blood donors has revealed prevalence of HCV as 0.5 to 14%^{4,5}. The primary sources of HCV infection are infected blood or blood products. Although sex with infected partner, multiple sexual partners and perinatal exposure are other potential sources of HCV transfusion⁶⁻⁸, sexual transmission between monogamous partners is rare9 and transmission at the time of delivery is 1 to 5%10. Additional risk factors for HCV transmission are folk medicine practices such as acupuncture, body piercing, tattooing and even commercial barbering¹⁰. Spontaneous cure of HCV infection occurs in 15 to 45% of patients¹⁰. The remaining patients are HCV infected and 5 to 20% of these patients develop cirrhosis over a period of two or more decades^{11,12}. Old age, male sex, associated alcohol consumption of more than 50gm/day, obesity and HIV co-infection increases the chances of progression to cirrhosis.¹³⁻¹⁵

The increasing role of HCV in cirrhosis does not mean to underestimate HBV. It is estimated that 400 million people worldwide have chronic HBV infection¹⁶, causing 0.5 to 1.2 million deaths every year and being the 10th leading cause of death worldwide¹⁷. Prevalence of HBV infection varies from 0.1% to 20% in different parts of the world¹⁸, being 10% in Pakistan¹⁹. Although mode of transmission of HBV and HCV resemble each other, sexual transmission and perinatal transmission are more common in HBV infection.18,20 Paients with chronic HBV infection have a 15% to 40% risk of developing cirrhosis²¹, liver failure or hepatocellular carcinoma²⁰. Because of increased risk of hepatocellular carcinoma in cirrhotic patients with HBV21 and HCV,22 many research workers regard cirrhosis as premalignant condition.

As alcohol consumption was not a common practice in our patients, therefore majority of the patients in this part of the world have cirrhosis either because of HBV or HCV infection or other non-infectious causes. A previous study conducted in this department showed very low frequency of HCV in cirrhotic patients. The aim of this study was to know about the recent situation in this area and to make comparison with the study carried out in this center in the past and studies of similar nature carried out at other centers.

PATIENTS AND METHODS

The study was carried out in medical unit of District Headquarter (DHQ) Teaching Hospital, D. I. Khan over a period of 3 years and four months i.e., from 1st January 2003 to 30th April 2006. All the cirrhotic patients, whether newly diagnosed or known cirrhotic and attending this hospital for the first time, were included in the study. These patients belonged to different areas of district D. I. Khan and adjacent districts and tribal areas. A total of 336 patients were studied. Diagnosis was made by stigmata of chronic liver disease, abdominal ultrasound and liver biopsies (if not contraindicated). Venous blood was taken and serum was tested for Hepatitis B surface antigen (HBs Ag) by ELISA and Hepatitis C virus antibodies (HCV Ab) by third generation ELISA. In all patients with ascites, ascitic fluid was examined for spontaneous bacterial peritonitis (SBP). Other investigations were done according to the presentation of the patients and treatment was given accordingly. Variables were recorded, analyzed and comparison was made with other studies.

RESULTS

Serological

Out of 336 patients shown in Table 1, seromarkers for HBV and HCV were as such (Table 1). One hundred and ninety (56.54%) were HCV positive

Male (228)

the total number of patients, otherwise neither the viruses nor the complications of cirrhosis have got any regard for sex.

DISCUSSION

Total (336)

group 45 to 75 years.

This study has shown that HCV is more common than HBV infection in patients with cirrhosis and

patients having dual infection with HBV and HCV are least common. This is in accordance with studies conducted at other centers. One of these studies³ has shown HCV Ab and HBs Ag positivity as 52% and 24% respectively, dual infection with HBV and HCV as 8% and patients having no evidence of either infection as 16%. Studies carried out by Nadeem et al23 showed HCV Ab positivity of 55% compared to HBs Ag positivity of 23%. Nine percent were positive

Table 1: Serological markers of HBV and HCV in 336 cirrhotic patients

Female (108)

Biomedica Vol. 22 (J	ul Dec. 2006)
----------------------	---------------

Markers	No.	% age	No.	%age	No.	%age
HCV Ab	133	58.33	57	52.77	190	56.54
HBs Ag	68	29.82	34	31.48	102	30.35
No markers	17	7.45	11	10.18	28	8.33
Dual Infection	10	4.38	6	5.55	16	4.76

comprising 133 (58.33%) male patients and 57 (52.77%) female patients. One hundred and two (30.35%) were positive for HBs Ag, 68 (29.82%) being male and 34 (31.48%) being female. In 28 (8.33%) patients there was no serological evidence of either HBV or HCV infection. Included in this group were 17 (7.45%) male and 11 (10.18%)

female patients. Sixteen (4.76%) patients were

having dual infection with HBV and HCV, 10

(4.38%) being male and 6 (5.55%) being female.

Thus out of 336 patients, 228 (67.85%) were males

and 108 (32.14%) were females. Age range was from 16 to 98 years, mean age being 56.2 years.

More than 70% of the patients were in the age

complications in these patients. Ascites was the

most common presentation being present in 256

(76.19%) patients comprising 153 (67.10%) male

and 103 (95.37%) female patients either alone or

in association with other complications. Varying

grades of encephalopathy were present in 142

(42.26%) patients, 90 (39.47%) being males and

52 (48.14%) being females. Haemetemesis and or

malaena was present in 106 (31.54%) patients, 72

(31.57%) being male and 34 (31.48%) being females. SBP occurred in 46 (13.69%) patients, 30

(13.15%) being male and 16 (14.81%) being female.

Hepatorenal syndrome was the complication in 38

(11.30%) patients, 21 (9.21%) being male and 17

(15.74%) being females. Hepatocellular carcinoma

was the least common complication affecting 23

(6.84%) patients, 13 (5.70%) being male and 10

(9.25%) being female. Female contributed less to

Table 2 shows the presenting features and

Presentation	Male (228)		Female (108)		Total (336)	
	No.	% age	No.	%age	No.	%age
Ascites	153	67.10	103	95.37	256	76.19
Encephalopathy	90	39.47	52	48.14	142	42.26
Haemetemesis and or Malaena	72	31.57	34	31.48	106	31.54
SBP	30	13.15	16	14.81	46	13.69
Hepatorenal syndrome	21	9.21	17	15.74	38	11.30
Hepatocellular carcinoma	13	5.70	10	9.25	23	6.84

Table 2: Presenting features and complications in 336 cirrhotic patients

for both HBV and HCV and in 13% patients the cause remained unknown. HCV Ab positivity of more than 50% has also been reported in another study²⁴. However the results of the present study are in sharp contrast to the study conducted²⁵ in this department a few years back. This previous study showed that a large number (44.6%) of cirrhotics were HBs Ag positive followed by patients having no serological evidence of HBV and HCV. Patients with HCV alone were responseble for only a small number (13.3%) of cirrhotic patients.

The reasons for this difference could be the following.

- 1. As there were only sixty patients in the previous study (compared to 336 in the present study) therefore there are increased chances of random error in the previous study because of the small size of the sample.
- 2. With increasing awareness, vaccination against HBV is increasing so that spread of HBV and therefore contribution of HBV to cirrhosis is decreased. However in case of HCV no effective vaccine is available. This can result in increasing cases of HCV in people at risk. Progression of disease in will mean increasing cases of cirrhosis due to HCV.
- 3. HCV is a comparatively newly diagnosed virus, identified 1st in 1988²⁶ and with the passage of time we will know more about various aspects of this disease. This may help in knowing about the increasing role of HCV in cirrhosis.
- 4. The method used for screening for HBV and HCV in the previous study was immunochromatographic technique (ICT), one step device (Acon Laboratories)²⁵ and in this pre-

sent study ELISA was used for detection of HBV and HCV. The sensitivity and specificity of ICT is less than that of ELISA and the manufacturers recommendations are that a negative test for HBs Ag and HCV Ab does not preclude the possibility of HBV and HCV infection respectively. A false negative ELISA can occur in newly diagnosed patients (antibodies not yet developed), and in immuncompromised patients such as HIV infection and chronic haemodialysis²⁷. However the patients in our study belonged to non of these groups and therefore ELISA in these patients should be considered accurate. This difference in the method used may be one of the factors responsible for large number of cases (40%) having no markers of either HBV or HCV and small number (13.33%) cases of HCV in the previous study compared to 8.33% with no markers of either infections and 56.54% HCV Ab postivity in the present study.

Males were more than female patients in all these studies. This could be either because of greater exposure of males due to their occupation or other life activities or because of underutilization of health resources by females so that they escape detection and remain unreported.

It is **Concluded** that HCV infection is a leading cause of cirrhosis in this part of the world and male cases outnumber female cirrhotics in HBS Ag positive, HCV positive, patients with dual infection as well as patients having no markers of either infection. The magnitude of the problem, especially due to HCV, could be decreased in various ways.

• Attention should be paid to the detection of HCV infection before it becomes irreversible

Biomedica Vol. 22 (Jul. - Dec. 2006)

so that the condition could be treated by appropriate therapy. All high risk individuals should be screened for HCV infection, regularly.

- In order to prevent the spread of infection, HCV infected persons should be advised not to share toothbrushes and dental or shaving equipment. HCV infected persons should not donate blood, body organs or other tissues.
- Public awareness regarding spread of the disease and avoidance of risk factors is needed.

REFERENCES

- 1. Kim WR. The burden of hepatitis C in United States. Hepatology 2002; 36 (Suppl 1): S30 34.
- 2. Alter MJ, Kruszon-Moran D, Nainan OV, McQuillan GM, Gao F, Moyer LA, Kaslow RA, et al. The prevalence of hepatitis C virus infection in the United States, 1988 through 1994. N Engl J Med 1999; 341: 556-62.
- 3. Hussain I, Nasrullah M, Shah AA. Prevalence of hepatitis B and C viral infections in liver cirrhosis in Pakistan. Pakistan J Gastroenterol 1998; 12 (1-2).
- 4. Mujeeb SA, Aamir K, Mahmood K. Seroprevalence of HBV, HCV and HIV infections among college going First Time Voluntary Blood Donors. J Pak Med Assoc 2000; 50: 269-70.
- 5. Rehman K, Khan AA, Haider Z, shafqat A, Iqbal J, Khan RU. Prevalence of Seromarkers of HBV and HCV in health care personnel and apparently healthy blood donors. J Pak Med Assoc 1996; 46: 152-4.
- 6. Puro V, petrosillo N, Ippolito G. Risk of hepatitis C seroconversion after occupational exposure in health care workers. Am J Infect control 1995; 23: 273-7.
- Recommendations for prevention and control of hepatitis C virus (HCV) Infection and HCV related chronic diseases. Centers for Disease Control and Prevention, MNWR recomm Rep 1998; 47 (RR-19): 1-39.
- 8. Jones MM. Children with hepatitis C. Hepatology 2002; 36 (Suppl 1): S173-8.
- 9. Terrault NA. Sexual activity as a risk factor for Hepatitis C. Hepatology 2002; 36 (Suppl 1) S99-105.
- Strader DB, Wright T, Thomas DL, Seeff LB. Diagnosis, Management and Treatment of Hepatitis C. Hepatology 2004; 39: 1147-71.
- 11. Strader DB, seeff LB. The natural history of chronic hepatitis C infection. Eur J Gastrenterol hepatol 1996; 8: 324-8.
- 12. Seeff LB, Hoofnagle JH. National Institute of Health Consensus Development Conference: management of Hepatitis C: hepatology 2002; 36 (Suppl 1) S1-2.

- Benhamou Y, Bocher M, Di Martino V, Charlotte F, Azria F, Coutellier A, Vidaud M et al. Liver fibrosis progression in Human immunodeficiency virus and hepatitis C virus co-infected patients. Hepatology 1999; 30: 1054-8.
- 14. Poynard T, Bedoosa P, Opolon P. Natural History of Liver Fibrosis Progression in Patients with chronic hepatitis C. Lancet 1997; 349: 825-32.
- 15. Harris DR, Gonin R, Alter HJ, Wright EC, Buskell ZJ, Hollinger FB et al. the relationship of acute transfusion-associated hepatitis to the development of cirrhosis in the presence of alcohol abuse. Ann Intern Med; 2001; 134: 120-4.
- Kowdley KV. The Cost of Managing Chronic Hepatitis B infection: A Global Perspective. J Clin Gastroentrol 2004; 38 (10 Suppl): S132-3.
- 17. Lavanchy D, Hepatitis B virus epidemiology, disease burden, treatment and current and emerging prevention and control measures. J Viral Hepat 2004; 11, 97-107.
- Alexander J, Kowdley KV. Epidemiology of Hepatitis B. Clinical Implications. Medscape Gen Med 2006; 8 (2): 13-18.
- 19. Malik IA, Legters LJ, Luqman M, Ahmad A, Qamar MA, Akhtar KK et al. The serological markers of hepatitis A and B in healthy populations in northern Pakistan. J Coll physician Surg Pak 2002; 12: 240-2.
- 20. Shepard CW, Finelli L, Fiore AE, Bell BP. Epidomiology of hepatitis B and hepatitis B virus infection in United States Children. Pediatr infect Dis J. 2005; 24: 755-60.
- 21. Lok AS, Mc Mahon B. Chronic hepatitis B. Hepatology 2001; 34: 1225-41.
- 22. Fattovich G, Giustina G, Degos F, Diodati G, Tremolada F, Nevens F, et al. Effectiveness of interferon Alfa on incidence of hepatocellular carcinoma and decompensation in cirrhosis type C. European concerted Action on Viral Hepatitis. J Hepatol 1997; 27: 201-5.
- 23. Nadeem MA, Waseem T, Sheikh AM, Grumman N, Irfan K, Hasnain SS, Hepatitis C virus: An Alarmignly increasing cause of liver cirrhosis in Pakistan. Pakistan J Gasteroenterol 2002; 16 (1): 3-8.
- 24. Shaikh MA, Shaikh WM, Solangi GA, Abro H. Frequency and transmission mode of Hepatitis C virus in Northern Sindh. J Coll physician Surg Pak 2003; 13 (12): 691-3.
- 25. Mahsud I, Khan H, Khattak AM, Relative frequency of Hepatitis B and C viruses in patients with hepatic cirrhosis at DHQ Teaching Hospital D. I. Khan. J Ayub Med Coll 2004; 16 (1): 32-4.
- 26. Bonkovsky HL, Metha S; A review and update. J Am Acad Dermetol 2001; 44 (2); 159-79.
- 27. Pawlotsky JM. Use and interpretation of Virological Tests for hepatitis C. Hepatology 2002; 36 (Suppl 1) S65-73.