# **RIBAVIRIN EXPOSURE INDUCES MORPHOMETRIC CHANGES IN THE SEMINIFEROUS TUBULES OF TESTES IN ALBINO RATS**

ALVIA BATOOL AND FOZIA FARZANA Department of Anatomy, Postgraduate Medical Institute and FMH College of Medicine and Dentistry Lahore – Pakistan

### ABSTRACT

Study Objectives: The objectives of the study were to describe and compare, seminiferous tubular diameter (STD) and seminiferous epithelial height (SEH) of testes of rat, with different doses of Ribavirin at different time intervals.

Introduction: The chemical disturbances may affect a vast number of potential sites in male reproductive system as well as its complex hormonal regulation. Testicular toxicity may reduce the fertility of the male. The current study was conducted to evaluate the effect of Ribavirin on the tubular diameter and epithelial height of seminiferous tubules in the testes of albino rats.

Materials and Methods: Seventy two sexually mature adult male albino rats weighing 180 - 200 gms were divided into four groups: A, B, C and D; each group having 18 rats. Ribavirin was administered intraperitoneally in different doses to these groups that were 20 mg, 100 mg and 200 mg/kg body weight, while group A was control. Each group was further divided into three subgroups according to three time points which were selected for sacrifice that were  $20^{\text{th}}$ ,  $40^{\text{th}}$  and  $60^{\text{th}}$  day from the last exposure to drug. Six randomly selected rats from each group were sacrificed every time.

Results and Conclusion: A decrease in the values of seminiferous tubular diameter and epithelial height of seminiferous tubules was noticed in comparison to control groups, on 20<sup>th</sup> day of sacrifice in all experimental groups. In rats sacrificed on day 40<sup>th</sup> and 60<sup>th</sup>, the signs of recovery were observed that were more marked in low dose groups than high dose groups which showed late recovery. We conclude that Ribavirin being used as antiviral drug induces reversible degenerative changes in the seminiferous tubules of testes of albino rats.

Key words: Testes, Rat, Gonadotoxicity, Seminiferous tubular diameter, Seminiferous epithelial height, Ribavirin.

## INTRODUCTION

Ribavirin is a non selective, anti-hepatitis, antiviral drug,<sup>1</sup> It was synthesized in 1970. The broad spectrum antiviral activity was reported in 1972. The aerosolic form was approved for the treatment of Respiratory Syncytial Virus in children. The ribavirin (orally) and Interferon alpha (injections) combination therapy was approved by United States regulatory authorities in 1998 for the treatment of Hepatitis C infection.<sup>2</sup> Intravenous form reduces the mortality of Lassa and haemorrhagic fevers.<sup>3,4</sup> The chemical name of ribavirin is 1-beta-D-ribofurnosyl-1H-1, 2, 4-triazole-3-carboxamide. It is a purine (guanosine) nucleoside analog with modified base and dribose sugar, both are necessary for its antiviral activity.5 Ribavirin has three metabolites Mono-, Di- and Triphosphates that are effective against various RNA and DNA viruses.6 Ribavirin-5' -triphosphate is the principal intracellular form.7 Ribavirin exerts its cytotoxicity in the testes after intra-peritoneal administration by getting absorbed from peritoneal cavity and reaching the germ cells. It acts as germ cell mutagen in rats. It also inhibits the activity of IMPDH that possibly reduces the guanylate concentration resulting in decreased cell growth and may cause chromosomal damage.<sup>8</sup>

A study was conducted by Levine; he noticed that Ribavirin reduces testes weight, sperm count, seminiferous tubular diameter and germinal epithelial thickness in mice.<sup>9</sup> Ribavirin is reversibly cytotoxic to germ cells and decreases the production of sperms. Narayana found a decrease in sperm count in a dose and time dependent pattern in the epididymis of rats receiving ribavirin.<sup>8</sup> He found it as mutagenic agent to germ cells in a transient fashion inducing anomalies of head and tail of sperms.<sup>10</sup> In humans, Ribavirin was found reversibly genotoxic due to its toxic metabolites in patients of Crimean-Congao hemorrhagic fever treated with the therapeutic doses of the said drug.<sup>11</sup>

The present study is, therefore, designed to examine the effects of ribavirin on the morphometry of seminiferous tubules of testes in rats as an experimental model with the hope that the results of this study may pave the way for reassurance of a patient using this drug about the reversibility of its gonadotoxic effects on his fertility. The usage of effective contraceptive measures during the treatment with the said drug must be advised.

#### MATERIALS AND METHODS

Seventy two sexually mature adult male Wistar albino rats, weighing approximately 180 – 200 gms were procured from the animal house of National Institute of Health (NIH), Islamabad. The animals were examined thoroughly for any pathology and weighed before commencement of experiment. The rats were housed at the animal house of

Post Graduate Medical Institute, Lahore under optimum conditions of temperature  $24 \pm 2^{\circ}$ C, humidity  $50 \pm 10\%$ , and in 12 hours light and 12 hours dark cycles. All animals were fed on normal rat chow and water ad libitum. After initial acclimatization of 5 days the rats were divided into four groups A, B, C and D, each group having 18 rats.12 This division was done by using random number table. Ribavirin being used in this research is a product of Getz pharma company, Karachi, Pakistan. The dose of Ribavirin was in accordance with the protocol of Narayana, et al.<sup>13</sup> Procedure of dose calculation is given in Appendix I. Ribavirin was weighed on a scientific balance (Sartorius precision balance®, Germany) at PG-MI, LHR. Ribavirin was dissolved in distilled water and was given at the dose levels of 20 mg/kgb.w, 100 mg/kgb.w and 200 mg/kgb.w to the experimental animals of group B, group C and group D respectively. The drug was administered intraperitoneally using insulin-U-100 syringes, at 24 hrs interval for 5 consecutive days. Whereas control group A was given equal amounts of distilled water intraperitoneally at same time interval and for the same duration. At the 20<sup>th</sup>, 40<sup>th</sup> and 60<sup>th</sup> day, after the last exposure to the drug, six animals were randomly selected from each study group including control group and were sacrificed. Three subgroups of each study group, A, B, C and D were formed according to three sacrifice times, hence making 12 subgroups in total as shown in Table 1.

Rats were weighed at the time of sacrifice and were anaesthetized. A vertical midline incision was given which was extended laterally to open the abdomen and thorax. The scrotum was cut longitudinally, epididymis was separated from testes surface and both testes were removed. Weight of each testis was recorded separately. Testes were fixed in Bouin's sol-

Biomedica Vol. 29 (Oct. - Dec., 2013)

**Table 1:** Experimental Chart.

| Groups             | Sub-<br>groups                                   | Dose of Ribavirin                                               | Schedule of<br>Sacrifice days from<br>the Last Dose                              |
|--------------------|--------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------|
| Control<br>A       | $\begin{array}{c} A_1 \\ A_2 \\ A_3 \end{array}$ | 0.75 ml distilled<br>water                                      | A1,20 <sup>th</sup> day<br>A2, 40 <sup>th</sup> day<br>A3, 60 <sup>th</sup> day  |
| Experimenta<br>l B | $egin{array}{c} B_1 \ B_2 \ B_3 \end{array}$     | 20 mg/kg ribavirin<br>dissolved in 0.75 ml<br>distilled water.  | B1, 20 <sup>th</sup> day<br>B2, 40 <sup>th</sup> day<br>B3, 60 <sup>th</sup> day |
| Experimenta<br>l C | $\begin{array}{c} C_1 \\ C_2 \\ C_3 \end{array}$ | 100 mg/kg ribavirin<br>dissolved in 0.75 ml<br>distilled water. | C1, 20 <sup>th</sup> day<br>C2, 40 <sup>th</sup> day<br>C3, 60 <sup>th</sup> day |
| Experimenta<br>l D | $egin{array}{c} D_1 \ D_2 \ D_3 \end{array}$     | 200 mg/kg ribavirin<br>dissolved in 0.75 ml<br>distilled water. | D1, 20 <sup>th</sup> day<br>D2, 40 <sup>th</sup> day<br>D3, 60 <sup>th</sup> day |

ution for 18hrs. The tissues were processed and embedded in liquid paraffin and blocks were prepared. Horizontal sections of 3-5 micrometer thickness were obtained by using a microtome. The slides were stained with Hematoxylin and Eosin, and studied under light microscope. STD and SEH were measured using ocular micrometer under X100 magnification. Transversely cut seminiferous tubules were selected, in each tubule both maximum and minimum diameters were measured and their average was taken. The same tubules were considered to measure SEH from the basement membrane to surface of the epithelium at two locations and mean was taken.

#### **Statistical Analysis**

The data was entered and analyzed using SPSS 17.0. The arithmetic mean of observations was calculated; standard deviation of mean values was calculated and the significance between two means was calculated by Analysis of variance (ANOVA) and Post Hoc (Tukey) test for quantitative differences between mean groups at 5% level of significance (taking p-value  $\leq$  0.05 as significant).

#### RESULTS AND OBSERVATIONS Seminiferous tubular diameter (STD)

On 20th day from the last treatment, the mean STD of testes of control group  $A_1$  was  $357 \pm 34.44$  that reduced to  $222 \pm 7.52$  in low dose group B1 and the values of STD further reduced to  $190 \pm 1.26$  and  $180 \pm 10.95$ , in medium dose group  $C_1$  and high dose group  $D_1$ , respectively. Overall reduction in the values was compared by applying ANOVA, that was significant with p-value < 0.001. Post Hoc test showed statistically significant difference between all study groups. The test revealed no significant difference

between  $C_1$  and  $D_1$  groups (Table 2). The mean values of Seminiferous tubular diameter (STD) were found reduced in all experimental groups, on the 40<sup>th</sup> day from the last dose. But this reduction was not as marked as observed on 20th day from the last treatment sacrifice. The values of STD in control group A2 was  $345 \pm 12.24$ , in low dose group  $B_2$  it was 257 ± 5.23, in medium dose group C2 and high dose group D<sub>2</sub>, these were  $239 \pm 5.54$  and  $234 \pm$ 3.76, respectively. Overall reduction in the values was compared by applying ANOVA, that was significant with p-value < 0.001. Post-Hoc test showed statistically significant difference between all study groups. The test did not reveal any significant difference between C2 and D2 groups (Table 2).

The mean values of seminiferous tubular diameter (STD) showed reduction in all experimental groups, on the 60th day from the last dose. But this reduction was not as marked as observed on the 20th day and 40<sup>th</sup> day from the last treatment. The values of STD in control group A3 was  $320 \pm 14.14$ , in low dose group B3 it was  $311 \pm 16.02$  that seemed to be very close to the value of control group. The mean values of STD in medium dose group C3 and high dose group D3 were  $277 \pm 1.22$  and  $258 \pm 2.73$ , respectively. This reduction in the values was compared by applying ANOVA, that was significant with p-value < 0.001. Therefore



Fig. 1: Bar Graph showing a comparison of Mean seminiferous tubular diameter (STD) between study groups at different times of sacrifice.

| Table 2: | Comparison     | of mean  | values | of | semin | iferous | tub | ular  | dia   |
|----------|----------------|----------|--------|----|-------|---------|-----|-------|-------|
|          | meter (STD)    | in micro | ometer | in | study | groups  | at  | diffe | erent |
|          | sacrifice time | 2S.      |        |    |       |         |     |       |       |

| Times                | Groups         | STD µm          | Anova    | Post Hoc Test        |                |  |
|----------------------|----------------|-----------------|----------|----------------------|----------------|--|
|                      |                | Mean ± SD       | p-value  | Comparison<br>Groups | STD<br>p-value |  |
| 20 <sup>th</sup> day | A <sub>1</sub> | 357 ± 34.44     |          | $A_1 - B_1$          | <0.001**       |  |
|                      | B1             | $222 \pm 7.52$  |          | $A_1-C_1\\$          | <0.001**       |  |
|                      | C1             | 190 ± 1.26      | <0.001** | $A_1 - D_1$          | <0.001**       |  |
|                      | $D_1$          | 180 ± 10.95     | <0.001   | $B_1 - C_1$          | 0.035**        |  |
|                      |                |                 |          | $B_1 - D_1$          | 0.004**        |  |
|                      |                |                 |          | $C_1 - D_1$          | 0.785          |  |
|                      | $A_2$          | $345 \pm 12.24$ |          | $A_2 - B_2$          | <0.001**       |  |
|                      | $B_2$          | $257\pm5.23$    |          | $A_2-C_2$            | <0.001**       |  |
| toth day             | $C_2$          | $239 \pm 5.54$  | <0.001** | $A_2 - D_2$          | <0.001**       |  |
| 40 <sup>th</sup> day | $D_2$          | $234\pm3.76$    | <0.001   | $B_2 - C_2$          | 0.002**        |  |
|                      |                |                 |          | $B_2 - D_2$          | <0.001**       |  |
|                      |                |                 |          | C2- D2               | 0.74           |  |
| 60 <sup>th</sup> day | A <sub>3</sub> | $320 \pm 14.14$ |          | $A_3 - B_3$          | 0.55           |  |
|                      | $B_3$          | $311 \pm 16.02$ |          | $A_3 - C_3$          | <0.001**       |  |
|                      | $C_3$          | $277 \pm 1.22$  | <0.001** | $A_3 - D_3$          | <0.001**       |  |
|                      | $D_3$          | $258 \pm 2.73$  | <0.001   | $B_3 - C_3$          | <0.001**       |  |
|                      |                |                 |          | $B_{3} - D_{3}$      | <0.001**       |  |
|                      |                |                 |          | $C_{3} - D_{3}$      | 0.03*          |  |

\*-p-value≤0.05 statistically significant change

\*\*-p-value<0.005 highly significant change

STD: Seminiferous tubular diameter







Biomedica Vol. 29 (Oct. - Dec., 2013)

Post-Hoc test was applied, that showed statistically significant difference between all study groups. The test revealed no significant difference between  $A_3$  and  $B_3$  groups due to recovery (Table 2). The seminiferous tubules of all study groups with changes in diameters at various sacrifice times are shown in figures 3, 4 and 5.

# Seminiferous epithelial height (SEH)

The mean SEH of testes of control group  $A_1$  on 20<sup>th</sup> day from the last dose was 95 ± 5.47, that reduced to 62 ± 7.52 in low dose group  $B_1$  and the values of SEH further reduced to 47 ± 5.16 and 35 ± 5.47, in medium dose group  $C_1$  and high dose group  $D_1$ , respectively. Overall reduction in the values was compared by applying ANOVA, that was significant with pvalue<0.001. Therefore Post-Hoc test was applied, that showed statistically significant difference between all study groups in all possible combinations (Table 2).

The mean values of Seminiferous epithelial height (SEH) were found reduced in all experimental groups, on the 40<sup>th</sup> day from the last treatment. But this reduction was not as marked as observed on 20<sup>th</sup> day from the last dose. The values of SEH in control group A<sub>2</sub> was 103 ± 8.16, in low dose group B<sub>2</sub> it was 86 ± 3.76, in medium dose group C<sub>2</sub> and high dose group D<sub>2</sub>, these were 73 ± 2.73 and  $65 \pm 5.47$ , respectively. Overall reduction in the values was compared by

applying ANOVA, that was significant with p-value < 0.001. Therefore Post-Hoc test was applied, that showed statistically significant difference between all study groups in all possible combinations. The test did not reveal any significant difference between  $C_2$  and  $D_2$  groups (Table 3).

The mean values of seminiferous epithelial height (SEH) showed reduction in all experimental groups, on the 60<sup>th</sup> day from the last treatment. But this reduction was not as marked as observed on the 20<sup>th</sup> day and 40<sup>th</sup> day from the last dose. The values of SEH in control group A<sub>3</sub> was 102 ± 7.52, in low dose group B<sub>3</sub> it was 100 ± 12.64 that seemed to be very close to the value of SEH in control group. In medium dose group C<sub>3</sub> and high dose group D<sub>3</sub>, the values of SEH were 77 ± 5.16 and 73 ± 5.16, respectively. This reduction in the values was compared by apply-

Biomedica Vol. 29 (Oct. - Dec., 2013)

| Times                   | Groups                   | SEH µm         | Anova      | Post Hoc Test        |                |  |
|-------------------------|--------------------------|----------------|------------|----------------------|----------------|--|
|                         |                          | Mean ±SD       | p-value    | Comparison<br>Groups | SEH<br>p-value |  |
| 20 <sup>th</sup><br>day | $A_1$                    | 95 ± 5.47      |            | $A_1 - B_1$          | <0.001**       |  |
|                         | B1                       | 62 ±7.52       |            | $A_1-C_1$            | <0.001**       |  |
|                         | C1                       | 47 ± 5.16      | <0.001**   | $A_1 - D_1$          | <0.001**       |  |
|                         | $D_1$                    | $35 \pm 5.47$  | <0.001**   | $B_1 - C_1$          | 0.002**        |  |
|                         |                          |                |            | $B_1 - D_1$          | <0.001*        |  |
|                         |                          |                |            | $C_1 - D_1$          | 0.015**        |  |
| 40 <sup>th</sup>        | $A_2$                    | $103 \pm 8.16$ |            | $A_2 - B_2$          | <0.001**       |  |
|                         | $B_2$                    | 86 ± 3.76      |            | $A_2 - C_2$          | <0.001**       |  |
|                         | $C_2$                    | $73 \pm 2.73$  | <0.001**   | $A_2 - D_2$          | <0.001**       |  |
| day                     | $D_2$                    | $65 \pm 5.47$  | <0.001     | $B_2 - C_2$          | 0.002**        |  |
|                         |                          |                |            | $B_2 - D_2$          | <0.001**       |  |
|                         |                          |                |            | $C_2 - D_2$          | 0.11           |  |
| 60 <sup>th</sup><br>day | A <sub>3</sub>           | $102 \pm 7.52$ |            | $A_3 - B_3$          | 0.98           |  |
|                         | $B_3$                    | 100 ± 12.64    |            | $A_3 - C_3$          | <0.001**       |  |
|                         | $C_3$                    | $77 \pm 5.16$  | <0.001**   | $A_3 - D_3$          | <0.001**       |  |
|                         | D <sub>3</sub> 73 ± 5.16 |                | - <0.001** | $B_3 - C_3$          | <0.001**       |  |
|                         |                          |                |            | $B_3 - D_3$          | <0.001**       |  |
|                         |                          |                |            | $C_3 - D_3$          | 0.89           |  |

**Table 3:** Comparison of mean values of seminiferous epithelial height (SEH) in micrometer in study groups at different sacrifice time.

\*-p-value≤0.05 statistically significant change

SEH: Seminiferous epithelial height

SD: Standard deviation

ing ANOVA, that was significant with p - value < 0.001. Therefore Post-Hoc test was applied, that showed statistically significant difference between all study groups. The test revealed no significant difference between  $A_3$  and  $B_3$ ,  $C_3$  and  $D_3$  groups (Table 3). The seminiferous tubules of all study groups with changes in epithelial height at various sacrifice times are shown in figures 3, 4 and 5.

#### DISCUSSION

Regarding seminiferous tubular diameter STD, Ribavirin caused decrease in STD at all sacrifice times. When results were compared with control groups these were statistically significant (p-value <0.05) (Table 2) (Fig. 1) at all time points. However, no significant difference was found between  $C_1$  and  $D_1$  groups on 20<sup>th</sup> day (p-value > 0.05),  $C_2$  and  $D_2$  groups

<sup>\*\*-</sup>p-value≤0.005 highly significant change

#### ALVIA BATOOL AND FOZIA FARZANA



Photomicrographs of testis of rat from  $B_1$ ,  $C_1$  and  $D_1$  experimental groups, showing shrunken seminiferous tubules with wavy basement membrane (Yellow arrow) and few degenerating seminiferous epithelial cells (Green arrow). H&E. X100.

Fig. 3: A Photomicrograph of testis of rat from A1 (Control) group, showing seminiferous tubule with normal basement membrane (Yellow arrow) and normal epithelium (Green arrow). H&E. X100.



A Photomicrograph of testis of rat from  $B_2$  experimental group, showing seminiferous tubule with recovery in size having regular basement membrane (Yellow arrow) and regenerated epithelial cells (Green arrow). H&E. X100.

A photomicrograph of testis of rat from  $C_2$  experimental group, showing seminiferous tubules with little recovery in size having regular basement membrane (Yellow arrow) and regenerating epithelial cells (Green arrow). H&E. X100.

A photomicrograph of testis of rat from  $D_2$  experimental group, showing shrunken seminiferous tubules with wavy basement membrane (Yellow arrow) and few degenerating Seminiferous epithelial cells (Green arrow). H&E. X100.

Fig. 4: A Photomicrograph of testis of rat from A2 (Control) group, showing seminiferous tubule with normal basement membrane (Yellow arrow) and normal epithelium (Green arrow). H&E. X100.

on 40<sup>th</sup> day (p-value > 0.05). Insignificant results were also noted between  $A_3$  and  $B_3$  groups (p-value > 0.05) on the 60<sup>th</sup> day from the last dose of the drug. Group C and D both were high doses, although there was some difference between their STD but it was not statistically significant. The only group that recovered completely was B<sub>3</sub> after lot of degenerative changes in the seminiferous tubules caused by ribavirin as indicated by (d) Narayana, et al.<sup>11</sup>

Seminiferous epithelial height SEH also showed reduction in all experimental groups after treatment with Ribavirin. The values were statistically signifiRIBAVIRIN EXPOSURE INDUCES MORPHOMETRIC CHANGES IN THE SEMINIFEROUS TUBULES OF TESTES IN ALBINO RATS



**Fig. 5:** A Photomicrograph of testis of rat from  $A_3$  (Control) group, showing seminiferous tubule with normal basement membrane (Yellow arrow) and normal epithelium (Green arrow). H&E. X100.

A Photomicrograph of testis of rat from  $B_3$  experimental group, showing seminiferous tubule with almost complete recovery in size having regular basement membrane (Yellow arrow) and regenerated epithelial cells (Green arrow). H&E. X100.

A photomicrograph of testis of rat from  $C_3$  experimental group, showing seminiferous tubules with little recovery in size having regular basement membrane (Yellow arrow) and regenerating epithelial cells (Green arrow). A tubule with degenerated epithelium can be seen. H&E. X100.

A photomicrograph of testis of rat from  $D_3$  experimental group, showing more shrunken seminiferous tubules with wavy basement membrane (Yellow arrow) and few Seminiferous epithelial cells (Green arrow). Seminiferous tubules with regenerated epithelium can be seen. H&E. X100.

cant (p-value < 0.05) (Table3) (Fig. 2) when compared with control group at all sacrifice times. The difference was insignificant between  $C_2$  and  $D_2$  groups (p-value > 0.05) on 40<sup>th</sup> day and between  $C_3$  and  $D_3$ groups (p-value > 0.05) on 60<sup>th</sup> day from the last dose of ribavirin. Insignificant difference was also observed between  $A_3$  and  $B_3$  groups (p-value > 0.05). Group C and D both were high doses, so they showed nearly similar changes. The only group that recovered completely was  $B_3$  after lot of degenerative changes caused by ribavirin. These findings were confirmed by (d) Narayana, et al. who noticed that STD reduced on day 14 and 35 with low dose and two higher doses reduced the STD and SEH on day 35 and further on day 70th. All these changes were transitory. This decrease in STD and SEH might be due to spermatogenic arrest and germ cell depletion inside the seminiferous tubules. The decrease in STD and SEH might have occurred in positive correlation with the degenerative and necrotic changes in the germinal epithelial cells, indicating the shrinkage of seminiferous tubules as a result of cell loss.<sup>13</sup>

The results of this study are consistent with the findings of Levine et al, who evaluated reversible spermatotoxicity of ribavirin in testes of mice. He noticed that this particular drug caused reduction in seminiferous tubular diameter and germinal epithelial thickening of seminiferous tubules in the testes of mice.<sup>9</sup>

It is concluded that ribavirin given to albino rats

exerted toxic effects and degenerative effects on the STD and SEH of testes with dose related and time related recovery. Only the low dose group showed recovery to greater extent, although high dose treated groups showed little recovery by the end of this study. The higher dose treated groups must be studied for longer time period till the testicular tissue show full recovery. The physicians while prescribing this drug to the patients must consider its possible gonadotoxic effects on his fertility. Reassurance of a patient is necessary using this drug about the reversibility of its effects. The usage of effective contraceptive measures during the treatment should be advised. The pathologists must consider the history of ribavirin intake while diagnosing a testicular tumor if they observe the same histopathological picture in the biopsy specimen of the testes of a patient.

#### REFERENCES

- 1. Trevors JA, Katzung BG, Masters SB. Antiviarl chemotherapy and prophylaxis. In: Katzung and Trevor's pharmacology. 9<sup>th</sup> ed. United States: McGraw Hill companies, 2010: p. 434-438.
- 2. Lau JYN, Tam RC, Liang TJ, Hong Z. Mechanism of action of ribavirin in the combination treatment of chronic HCV infection. Hepatology. 2002; 35 (5): 1002-1009.
- Ali KN, Anushree J, Reenu C, Mohammad A, Kamal K. Crimean Congo hemorrhagic fever – An article review. International research journal of pharmacy. 2011; 2 (5): 33-40.
- Acosta EP, Flexner C. Antiviral agents (Non retroviral). In: Brunton LL, Chabner BA, Knollmann BC, editors. Goodman and Gilman's. The pharmacological basis of Therapeutics. 12<sup>th</sup>ed. New York: Mcgraw Hill

Companies; 2011: p. 1613-1615.

- 5. El-Brashy AM, Sheribah ZA, Sharaf El-Din MK, El-Gamal RM. Kinetic determination of ribavirin in drug formulations. International Journal of biomedical sciences. 2007; 3 (1): 65-71.
- 6. Preston SL, Drusano GL, Glue P, Nash J, Gupta SK, Mcnamara P. Pharmocokinetics and absolute bioavailability of ribavirin in healthy volunteers as determined by stable-isotope methodology. AntiMicrob Agents and Chemother. 1999; 43 (10): 2451-2456.
- SIS: Chem ID plus record for Ribavirin (36791-04-5) [Internet]. National library of Medicine; 2006 (Cited 2011 December 10) Available from: http://chem.sis.nlm.nih.gov/chemidplus/chemidlite.j sp National Toxicology program-CAS Registry number: 36791-04-5. Toxicity effects.
- 8. Narayana K, D'Souza UJ, Rao KP. Effect of ribavirin on epididymal sperm count in rat. Indian J physiol Pharmacol. 2002; 46 (1): 97-101.
- 9. Levine BS, Tomlinson MJ, Parker RM. Onset and reversibility of ribavirin induced testicular toxicity in mice. Toxic subst j. 1994; 13 (3): 171-186.
- Narayana K, D'Souza UJ, Rao KPS. Ribavirin-induced sperm shape abnormalities in Wistar rat. Mutat Res. 2002; 513 (1-2): 193-196.
- 11. Tatar A, Ozkurt Z, Hacimuftuoglu A, Yesilyurt A, Vancelik S. Evaluation of Ribavirin genotoxicity with sister chromatid exchange and micronuclei assays in humans. Turk J med Sci. 2009; 39 (2): 241-246.
- Conour LA, Murray KA, Brown MJ. Preparation of animals for research – issues to consider for rodents and rabbits. ILAR Journal. 2006; 47 (4): 283-293.
- Narayana K, D'Souza UJA, Narayan P. The antiviral drug ribavirin reversibly affects the reproductive parameters in male wistar rat. Folia. Morphol. 2005; 64 (2): 65-71.